 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal # J4 }1 _( ]+ r# [, F) s
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 7 d0 K4 r- ]9 h
+ x3 n& k+ o' p6 X8 @2 `a + b = t
+ @4 _* p1 y! L1 a(a + b)(a - b) = t(a - b)* \: i5 R% K/ |, f% L
a^2 - b^2 = ta - tb E! l: }' H: }/ L( a. U
a^2 - ta = b^2 - tb. X2 H: G% L& e# R+ p- z$ `) O
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4' }8 p* b& u; B/ U
(a - t/2)^2 = (b - t/2)^2; I& ?4 C8 u% Q+ v; b& }
a - t/2 = b - t/2
% ^2 C! m, q' Ja = b
4 Y( W& k( [' s) Z/ D
% ^7 F% x/ _8 m2 i6 P: f h, TSo all numbers are the same, and math is pointless. |
|