 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal - i4 V$ }' f& p" {9 B: Y
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
1 G, U5 e9 v1 |, n
( N: |/ R. J# E% P1 na + b = t* m3 n3 k% U( N7 I3 ^+ a
(a + b)(a - b) = t(a - b)
1 N* Y, ~# x7 @7 Y: va^2 - b^2 = ta - tb
) d. p6 f6 a6 L& S' Z% r, A" Ba^2 - ta = b^2 - tb9 J7 s0 A/ A( M# [; F0 k, R6 v+ @
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4# o, u% n" F3 p# F. c& i
(a - t/2)^2 = (b - t/2)^2
; e5 o, s1 ]0 p" {2 sa - t/2 = b - t/2
, ?7 N; Y( g! {" P" Na = b
; |3 m1 Y2 \& l( j$ ?. e( z* M
4 F0 w1 _; C5 }& L8 e9 k2 H, L6 VSo all numbers are the same, and math is pointless. |
|