All Numbers Are Equal : R8 D( \% [6 J
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then % {2 b4 V' r4 v" K' y. R% E& B0 U* m8 ~6 m
a + b = t 8 p" g0 x. U7 J1 k(a + b)(a - b) = t(a - b) 8 h3 p: z" w+ e% @9 L4 Ua^2 - b^2 = ta - tb / q2 d; ^9 O4 P1 V+ ~a^2 - ta = b^2 - tb; @1 s! n- t7 g' k; p0 y4 J
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 5 A/ E; A2 U( S7 i/ y# [& M(a - t/2)^2 = (b - t/2)^2# N3 O. R9 c* g- J, ^
a - t/2 = b - t/2* l6 E# ^6 ~& ~4 B5 d
a = b * F( T: v' L& m+ e) I+ D' X7 o$ Q' r
So all numbers are the same, and math is pointless.