All Numbers Are Equal 5 d/ w0 U- ?" M4 W* o2 ~! c- zTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then # B+ B8 X- w0 W$ I
4 R# e: {- B# R$ e4 Y+ _9 _a + b = t 0 l' W, G2 W' Q2 p! |/ r4 P) P(a + b)(a - b) = t(a - b) * b u9 F3 k ~! q% ra^2 - b^2 = ta - tb# d' [7 G. Q8 q% _2 N; |
a^2 - ta = b^2 - tb * e. e$ M! p0 z: H( }( Na^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 $ T1 D. |2 r! ]. W(a - t/2)^2 = (b - t/2)^2 2 p- n5 D/ r1 {; Z2 d( s$ L$ n& @a - t/2 = b - t/2 / k% k1 r" B r8 }' |; r3 Xa = b ! A h8 _4 w* D' I" l9 ^/ ] 4 x- w1 c; ~; A4 |/ U- BSo all numbers are the same, and math is pointless.