 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal , |% M7 |& K) o5 v, n
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then - L/ P5 N& M9 V- m8 P! t! ^
5 _5 r/ V7 a4 W8 T) @0 E4 xa + b = t
- P1 ~5 w& s3 i, A4 U, w- {(a + b)(a - b) = t(a - b)' s% N4 f7 a2 t! B
a^2 - b^2 = ta - tb
( e9 Z, I' c6 @a^2 - ta = b^2 - tb' O% j! z- \7 x! |% u+ N5 ?' B. z
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/43 W4 e, f. g9 h" v0 c9 q4 T
(a - t/2)^2 = (b - t/2)^2
2 |3 n* e# k& ~/ m9 {a - t/2 = b - t/2( F8 ?- l, A7 {9 T- V1 H5 [
a = b
! ~& k. s0 n% S0 [& l& N3 [7 b7 {9 @0 t7 e
So all numbers are the same, and math is pointless. |
|