 鲜花( 0)  鸡蛋( 0)
|
Suppose Intr is annually compounded
\9 ]2 S0 C9 ~0 Z' c Month 0 Mon. 8 Mon. 12
- \) G k: d# \+ \Cash Principal X -750 -950
$ j- i7 v7 f; h0 }Cash Intr (Should Pay) -X*9.5%*8/12 -(X-750)*9.5%*4/12 6 P0 N! h+ Z, p, d( g4 K/ w
PV at mon 0 X -[750+X*9.5%*8/12] -[950+(X-750)*9.5%*4/12]
$ b/ G; @( j8 D& B" M /(1+7.75%*8/12) /(1+7.75%*12/12) Y1 y9 b V' S+ b3 I! V3 Z8 e
% h% ?1 Z, ^) E8 W4 g- ~
these 3 should add up to 0, i.e. NPV at month 0 is 0.
$ W* k: [! I6 N9 w" Q G1 C. v
2 L$ k) I1 D; F0 K8 _6 \3 hConclusion X = 1729.8 ; t7 n7 N8 Z, }) ~9 V! @
8 G, l/ p* a5 I5 b( _+ X- ^
So, Initial borrowing was 1730 *(1+7.5%) 1859.5 approx. $1,860 4 T) [- ~" q0 c4 A! }' q) `5 x
|
|