 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal " m! h8 y9 h0 t( t! }7 n8 Z+ s! f( x
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ( u/ g0 I+ D) `7 B, [2 }6 E0 {
+ y( Q9 t; G$ S8 Wa + b = t
0 L7 t: E6 ~8 R& y. F7 a(a + b)(a - b) = t(a - b)% {+ S8 q3 x8 v, a
a^2 - b^2 = ta - tb( A( O# u6 Z, P1 f8 Y
a^2 - ta = b^2 - tb
# T7 p0 q6 M i0 \9 ~% a r& h& g2 La^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/41 y) @: G, i/ ~
(a - t/2)^2 = (b - t/2)^2
0 ~+ L. }6 V* y* h% B. Ca - t/2 = b - t/2
5 e) Q t, e( y N! G+ }a = b 9 g. @$ A2 c" T% q# H
/ c$ x+ B6 p3 v T/ FSo all numbers are the same, and math is pointless. |
|