 鲜花( 19)  鸡蛋( 0)
|
Solution:
* t2 J1 G: z0 k
' A: {! n$ ~8 { T: oFrom: d{(a+bx)*C(x)}/dx =-k C(x) + s
5 S' \7 Q: h) a, i$ C8 Iso:
% j# k' t3 T! P. `) b
" j' ^1 Q* E, L+ q8 }/ Z" |bC(x) + (a+bx) dC(x)/dx = -kC(x) +s
0 Y9 r `' m( Q* r' \& Z9 i% pi.e.
1 M _) F( f% I
$ n/ K$ }8 F* A9 Y+ k(a+bx) dC(x)/dx = -(k+b)C(x) +s. h! b+ v% Z: _. z
/ {' Y2 G7 J5 q+ k) c6 Q6 k% {$ R4 r. J
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
- ]; O( { N4 f6 X* t) r- Z8 F0 C4 |which means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx
; c! C0 h; w% ]% _- l# ~therefore:& `" ^6 \' K. M: U% t( w( j
; L3 z7 U9 a" H0 H2 B7 o{(a+bx)/K} dY(x)/dx=Y(x)
6 p, a5 R' ?9 G1 N3 |* q# F8 O* y3 A6 t0 {/ @' F5 l
from here, we can get:5 A3 X; d: f+ b( ~
/ z* y3 ~) C/ `! B1 h$ z4 K
dY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx)# M! O) p, i6 u0 E
( \: A/ C! S) Y$ D; P4 Pso that: ln Y(x) =( K/b) ln(a+bx)
; ~3 _1 H/ w3 T$ i* f0 O
& w8 d/ P6 D0 cthis means: Y(x) = (a+bx)^(K/b)
# h5 t; L; l$ Z5 S t' x0 b7 uby using early transform, we can have:
8 h" C& H' s) {( r1 b1 G& ]/ E4 M# e
-(k+b)C(x)+s = (a+bx)^(k/b+1)
q: `% J$ `0 M! u( H- H+ [2 p* }! J- U/ N: z l
finally:
, z% q, o6 l* Z3 q4 V+ q' V K# T6 h$ C; d0 p
C(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|