 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal ( g8 A% I" u, z( w$ b
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then / E* [; i5 |4 {& x6 ~9 q: D, R( U
; o! T9 T' D; Wa + b = t
5 J3 y+ @4 |# }8 o/ Z! N(a + b)(a - b) = t(a - b)
4 l: }9 |6 N e. [% T$ k9 Va^2 - b^2 = ta - tb, }$ @' w; O0 e' l, T
a^2 - ta = b^2 - tb: o) N$ O0 {) T$ T4 d5 ?
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
6 {+ `) R( `& Y: w, l% H$ L9 I(a - t/2)^2 = (b - t/2)^2( w, w+ l! _) l; a% y, b3 ~
a - t/2 = b - t/2( }# F$ P/ ^7 ?; r7 V2 h( H5 d) G
a = b 0 U: E3 Q5 t) U' Z5 c1 L
% k# T) O8 c/ G9 y8 wSo all numbers are the same, and math is pointless. |
|