 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal 9 t( n# J; W, n* \; t8 ]
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then
( t) w* d+ ]4 G+ y* @# t9 m! Z: c% l9 A! [( E
a + b = t
) X2 P) b' L: b; e3 |6 V7 t; a(a + b)(a - b) = t(a - b)1 y; z! Q+ M! f6 Q8 ~
a^2 - b^2 = ta - tb
! y( p/ I% C. ~& T) Ua^2 - ta = b^2 - tb% T* a/ t7 o3 { U# B/ c5 m2 `
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4$ V: F' Y* W% I- ]
(a - t/2)^2 = (b - t/2)^2
3 D _! j% v, Ca - t/2 = b - t/2/ V& o7 F" }' J$ n5 x1 f
a = b - q* y1 Q; Q, T b6 x
8 f. D3 H6 i3 K7 A) h3 ^' r" k4 r4 J0 {
So all numbers are the same, and math is pointless. |
|