All Numbers Are Equal * D2 N% O% j! b7 X
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 8 `% B" W' V! Y _- X7 ^. p# u1 F' J5 S
a + b = t & Q. Z. T7 w" @(a + b)(a - b) = t(a - b) ( N" N6 S& B( { Ka^2 - b^2 = ta - tb & \6 j* `% t) ]+ B# K! C& e% l. I' k8 ua^2 - ta = b^2 - tb 1 m2 G$ z$ ] Ia^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4) J7 w. a. i. ~3 \/ ]
(a - t/2)^2 = (b - t/2)^2 + w/ y& p1 g' j1 g7 @/ ^/ na - t/2 = b - t/21 Z( v% @4 C1 G1 y7 i
a = b + y, q4 Q/ N5 n5 ^+ l4 l% G0 N+ e6 f+ \& v
So all numbers are the same, and math is pointless.