All Numbers Are Equal 1 B6 r" }5 D3 l" j* S iTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ! q4 F1 G4 @. D1 L! J1 `4 q
4 z3 ~% f2 g% Y: A/ b- Q- a' o ua + b = t $ W" w. n$ Y% R5 p(a + b)(a - b) = t(a - b) ' W+ O- `8 X) O2 [+ Da^2 - b^2 = ta - tb3 S0 e1 m$ J/ `# M2 U2 S
a^2 - ta = b^2 - tb ( S, U: o* t- {! Ya^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/46 z3 P4 P8 b! N9 x! Y' A' C, [
(a - t/2)^2 = (b - t/2)^2+ v* \! N2 r8 f8 N
a - t/2 = b - t/26 E, q% R" T; h
a = b . O3 X3 N1 \9 V
' d* I0 o9 x. [- @1 J
So all numbers are the same, and math is pointless.